Improved Sensors Could Reduce Energy Used for HVAC Systems

Improved Sensors Could Reduce Energy Used for HVAC Systems

From left, researchers Dr. Fei Hu, Dr. Zheng O’Neill and Dr. Charles O’Neill stand in front of HVAC controllers connected to a computer that can simulate conditions in a commercial building.

TUSCALOOSA, Ala. — Engineering researchers at The University of Alabama are part of a nationwide project to find ways of reducing energy used to heat, cool and ventilate buildings.

Dr. Zheng O’Neill, UA assistant professor of mechanical engineering, is leading a team developing testing standards and control strategies for sensors used to control heating, ventilation and air conditioning, or HVAC, in commercial and residential buildings.

The goal is to provide a way for those who manage HVAC systems to know sensors work efficiently when detecting human movement and occupancy to control heating, cooling and ventilation.

“When we complete the work, we should be able to say that if we use this kind of sensor-driven control strategy, we can achieve HVAC energy savings of at least 30 percent,” O’Neill said.

UA received nearly $1.5 million from the U.S. Department of Energy’s Advanced Research Projects Agency-Energy, or ARPA-E, through its Saving Energy Nationwide in Structures with Occupancy Recognition, or SENSOR, program.

About 13 percent of all energy produced in the United States is used to heat, cool and ventilate buildings, with much of it wasted—used when buildings are unoccupied or not fully occupied. The SENSOR program supports innovative and highly accurate presence sensors and occupant counters that optimize HVAC of buildings while reducing cost and slashing energy use.

SENSOR project teams can take advantage of existing low-cost wireless and electronic communication technologies and could reduce HVAC energy usage by 30 percent, while simultaneously addressing user requirements for cost, privacy and usability.

Because building spaces, usage patterns and HVAC systems vary widely, as do climates, validating the energy savings from a particular technology in the building space can be challenging.

No existing tools fully assess and validate presence sensors and people-counting technologies. In order to enable widespread adoption of such technologies for both retrofit and new building scenarios, the research team will develop a way to validate energy-saving claims.

The team will investigate various types of occupancy sensors, such as human-presence sensing, people counting, and carbon dioxide sensors for detecting failure rates and HVAC energy-saving potential in a wide range of real-world applications.

The proposed testing protocol and simulation suite, which can be used for any sensor-driven HVAC energy efficiency technology, will be tested and validated in side-by-side laboratory controlled environments at the Delos Well Living Lab and Pacific Northwest National Laboratory’s Lab Homes, and in field trial testing in four commercial buildings and four residential houses in two climate zones.

The team’s focus on working within existing industry standards will help inform projects’ eventual transitions to commercialization.

“Breakthroughs from this effort will help ensure U.S. energy independence and leadership in the field of smart and energy-efficient buildings,” O’Neill said.

Other researchers on the project include Dr. Fei Hu, UA professor of electrical and computer engineering, and Dr. Charles O’Neill, UA assistant professor of aerospace engineering and mechanics. The project also includes the University of Texas at San Antonio, the Pacific Northwest National Laboratory and Taylor Engineering, an engineering firm in California.


Adam Jones, UA communications, 205-348-4328,